

Détendeur PN 16/25/40 DN 15-200 4 5801

Edition: 3/94

Application

Réduction de pression pour vapeur, gaz et liquides non inflammables et non corrosifs.

Utilisation

Sur tous les réseaux de distribution d'énergie ou de fluides à l'alimentation de machines, échangeurs, procédés de fabrication etc. nécessitant une pression constante quelles que soient les variations de charge ou débit.

Pressions nominales (PN) et diamètres nominaux (DN)

Type 5801 F 616: PN 16, DN 15-200 (fonte) Type 5801 F 325: PN 25, DN 200 (acier moulé) Type 5801 F 340: PN 40, DN 15-150 (acier moulé) Type 5801 F 540: PN 40, DN 15-50 (acier inox.)

Exécution

Les détendeurs sont des régulateurs proportionnels avec clapet équilibré, à simple siège, fonctionnant sans énergie auxiliaire.

Le détendeur est constitué du corps avec la garniture intérieure, le soufflet, le ressort, le volant et le mécanisme de commande. Pour des fluides à des températures supérieures à 100 °C, il est indispensable de monter un ballon d'accumulation d'eau pour éviter la surchauffe de la membrane.

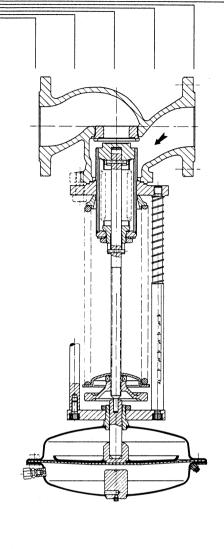
Le corps avec la garniture intérieure, le soufflet et le mécanisme de commande sont fournis comme unité complète. Le ballon d'accumulation d'eau doit être monté selon les instructions de montage et de mise en service.

Le tube d'impulsions vers la membrane (tube 8 x 1 mm) et le tube d'impulsions vers la tuyauterie (tube 17,2 x 2,6 mm) doivent être prévus par le client. Les raccords sur le mécanisme de commande et le ballon d'accumulation d'eau font partie de notre fourniture.

Fonctionnement

Lorsque le fluide s'écoule dans le détendeur la chute de pression provoque une réduction de la pression dans l'installation en aval du détendeur.

Cette pression est transmise, par l'intermédiaire du tube d'impulsions, à la membrane du mécanisme de commande et exerce une force qui vient en opposition à celle du ressort. Tant que les deux forces sont en équilibre le clapet reste dans la position déterminée par la valeur de consigne. En cas de déviation, la position du clapet est modifiée jusqu'à ce que l'équilibre soit rétabli. La pression aval est réglée à l'aide du volant. L'étanchéité entre le corps et la tige de commande est garantie par un soufflet qui sert également d'équilibrage pour la pression amont.


Indications à fournir à la commande et exemple de définition de l'appareil

Détendeur GESTRA type 5801 F... DN..., PN... Valeur k_{vs}...m³/h Pression aval ...bar Mécanisme de commande ...

Matériaux

Corps: Fonte GG 25/acier moulé GS-C 25/acier inox.

Pièces intérieures: acier inox. avec/sans ballon d'accumulation d'eau

1. Détermination du diamètre nominal

Pour déterminer le diamètre nominal du détendeur, calculer la valeur k, à l'aide des formules indiquées dans le tableau 1, augmenter la valeur obtenue de 10 % et choisir la valeur kus correspondante ou immédiatement supérieure selon tableau 2.

Calcul de la valeur ky

Tableau 1

	Chute de pression	pour liquides	pour gaz	pour vapeur		
L	$\Delta p < \frac{p}{2}$	$= \frac{Q}{31,6} \sqrt{\frac{\varrho}{\Delta p}}$	$= \frac{Q_N}{514} \qquad \frac{\varrho_N \cdot T_1}{\Delta p \cdot p_2}$	$= \frac{\dot{m}}{31,6} \sqrt{\frac{v''}{\Delta p}}$		
k _v	$\Delta p > \frac{p}{2}$		$= \frac{Q_N}{257 p_1} \qquad \varrho_N \cdot T_1$	$= \frac{\dot{m}}{31,6} \sqrt{\frac{2 \cdot v''}{p_1}}$		

Nomenclature

 k_v [m³/h] coefficient de débit Q [m³/h] débit volume de liquides

 $Q_N [Nm^3/h]$ débit volume de gaz aux conditions

normales (0°C, 1013 mbar) m [kg/h] débit masse de vapeur

p₁ [bar] pression absolue en amont du détendeur (entrée)

pression absolue en aval du

p₂ [bar] détendeur (sortie)

Δp[bar] perte de charge à travers

le détendeur (p₁-p₂)

 $Q [kg/m^3]$ masse volumique du fluide aux conditions de service T₁ et p₂ $Q_N[kg/m^3]$ masse volumique du gaz aux

conditions normales (0°C, 1013 mbar)

v'' [m^3/kg] volume massique de la vapeur à T₁ et p₂

ou - si $\Delta p > \frac{p_1}{2} - \frac{p_1}{2}$

T₁ [K] température absolue (T = 273 + t°C)

Valeur k_{vs} (m₃/h)

Pour des raisons de sécurité, contrôler la vitesse d'écoulement avant de choisir le diamètre nominal du détendeur. La vitesse d'écoulement dans la sortie du détendeur ne doit pas dépasser 100 m/s pour la vapeur d'eau.

Tableau 2

DN	15-25	15	20	25	32	40	50	65	80	100	125	150	200
k _{vs}	2,1	3,6	6	9,6	12	18	30	46	71 ·	104	180	245	305

Le rapport de réglage est 1:10

2. Détermination de la pression nominale

Déterminer la pression nominale à l'aide du tableau pression/température ci-dessous (tableau 3).

Plages d'utilisation suivant pression (bar) et température (° C)

Tableau 3

°C PN	-10	120	200	250	300	350	400
16 GG 25	16	16	13	13	13	/	1
25 GS-C25	25	25	22	20	17	16	13
40 GS-C25	40	40	35	32	28	24	21

Les valeurs se basent sur la norme DIN 2401

3. Détermination du mécanisme de commande

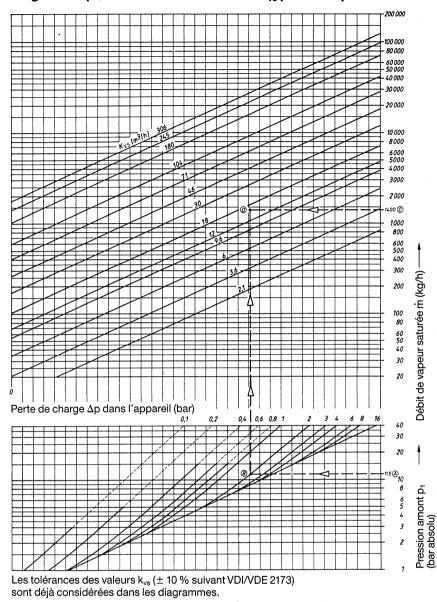
Choisir le mécanisme de commande à l'aide du tableau 4 en fonction du diamètre nominal du détendeur et de la pression aval p₂ exigée.

Choix du mécanisme de manoeuvre (pression en bar effectif)

Tableau 4

DN	15	20	25	32	40	50	65	80	100	125	150	200
Plage de réglage (PR) bar	8-20	8-20	8-20	8-20	8-20	8-20	8-20	8-20	8-20	8-20	8-20	8-20
Ecart max. de PR ± bar	0,23	0,37	0,56	0,64	0,90	1	1,92	1,21	1,99	1,75	2,12	2,21
Mécanisme de commande	B1	B1	B1	B1	B1	B1	B 1	A 1	B2	A 1	A 1	A 1
Plage de réglage (PR) bar	1,1-10	1,1-10	1,1-10	1,1-10	1,1-10	2,4-10	2,4-10	3,2-10	3,2-10	3,2-10	3,2-10	3,2-10
Ecart max. de PR ± bar	0,11	0,19	0,29	0,32	0,43	0,43	0,68	0,59	1,02	1,04	1,27	1,32
Mécanisme de commande	A 1	A 1	A 1	A 1	A 1	A1	A 1	A2	A 2	A 2	A2	A 2
Plage de réglage (PR) bar	0,1-1,4	0,1-1,4	0,1-1,4	0,1-1,4	0,1-1,4	0,8-3	0,8-3	1,2-4	1,2-4	1,8-4,5	1,8-4,5	1,8-4,5
Ecart max. de PR ± bar	0,016	0,024	0,036	0,044	0,059	0,16	0,23	0,32	0,48	0,65	0,79	0,82
Mécanisme de commande	A 4	Α4	A 4	A 4	A 4	А3	A 3	A 3	A 3	A 3	A 3	A 3
Plage de réglage (PR) bar						0,1-1	0,1-1	0,4-1,5	0,4-1,5	0,8-2,2	0,8-2,2	0,8-2,2
Ecart max. de PR ± bar						0,055	0,078	0,107	0,144	0,235	0,284	0,296
Mécanisme de commande						A 4	A 4	A 4	A 4	A 4	A 4	A 4
Plage de réglage (PR) bar								0,1-0,6	0,1-0,6	0,4-1,1	0,4-1,1	0,4-1,1
Ecart max. de PR ± bar								0,053	0,07	0,12	0,144	0,151
Mécanisme de commande								A 5	A 5	A 5	A 5	A 5
Plage de réglage (PR) bar										0,1-0,6	0,1-0,6	0,1-0,6
Ecart max. de PR ± bar										0,064	0,076	0,079
Mécanisme de commande										A 6	A 6	A6

L'écart max. dans la plage de réglage pour DN 125, mécanisme de commande A2 est, par exemple, \pm 1,04 bar.


L'écart dépend du débit.

Si, dans notre exemple, on utilise seulement 138 m³/h de la valeur k_{vs} 180,

c.-à-d. 77%, l'écart sera de $\pm 1,04$ bar x $0.77 = \pm 0,8$ bar.

Une détermination approximative du diamètre nominal est possible à l'aide des diagrammes ci-dessous indiquant les valeurs k_{vs} . Dans le cas d'une chute de pression surcritique ($p_2 < p_1/2$) nous sommes bien volontiers prêts à vous aider.

Diagramme pour déterminer les valeurs k_{vs} pour la vapeur

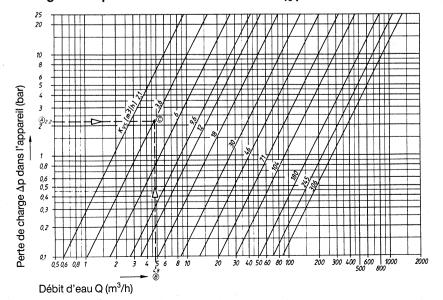
Exemple

Vapeur saturée p₁ 11,5 bar abs.

Δp 2 bar t₁ 186 °C

t₁ 186°C m 1400 kg/h

Résultat:


k_{vs} 18 m³/h

Voir points d'intersection (a) (a) (a) (a) (b) sur le diagramme ci-contre.

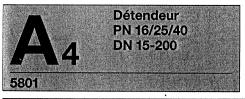
Le point \odot se trouve entre les valeurs k_{vs} 12 m³/h et 18 m³/h.

Choisir toujours la valeur k_{vs} la plus élevée, dans notre exemple 18 m^3/h .

Diagramme pour déterminer les valeurs k_{vs} pour l'eau

Exemple

Eau

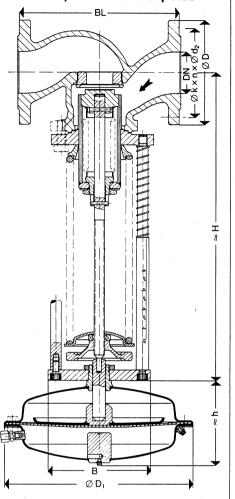

 Δp 2,2 bar Q 4,8 m³/h

Resultat:

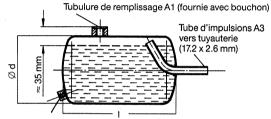
κ_{vs} 3,6 m³/h

Voir points d' intersection (8) (8) (9) sur le diagramme ci-contre.

Le point \circledcirc se trouve sur la ligne $k_{vs}=3,6$. Choisir un détendeur avec k_{vs} 3,6. Si le point d'intersection se trouve entre deux valeurs k_{vs} , choisir la valeur immédiatement supérieure.



GESTRA


P.O. Box 105460, D-28054 Bremen Hemmstraße 130, D-28215 Bremen Tél. (421) 3503-0 Fax (421) 3503-393 Tx 244945 gbd

Matériaux, dimensions et poids

Matériaux

Туре	5801 F 616	5801 F 325, 340	5801 F 540							
	 									
Pression nominale	PN 16	PN 25, 40	PN 40							
Corps	GG-25 (0.0623)	GS-C 25 (1.0619)	GX5 CrNiMoNb 18 10 (1.4581)							
Tête	C 22.8 (1.0460)	C 22.8 (1.0460)	X 6 CrNiMoTi 17 2 2 (1.4571)							
	St 35.4 (1.0309)	St 35.4 (1.0309)	' ' '							
	St 41 KT	St 41 KT								
Soufflet	X 6 CrNiTi 1810 (1.454	41)								
Joints plats	Graphite pure									
Siège	X 20 Cr 13 (1.4021)		1.4571							
Clapet	X 6 CrNiNb 18 10 (1.4	550)								
Tige	X 20 Cr 13 (1.4021)									
Ressort	50 CrV 4 (1.8159)		1.7103 chromé							
Corps de	GG-20 (0.6020)		St 14-4 (1.0336)							
membrane	St 14-4 (1.0336)									
Membrane	Mécanisme de comm	Mécanisme de commande A1-3: caoutchouc chloroprène (CR)								
			houc chloroprène (CR)							
		A4, A5: caoutch	nouc acrylonitrile butadiène (NBR)							

Raccord A2 pour tube d'impulsions vers membrane (raccord 8 x 1 mm)

Dimensions du ballon d'accumulation d'eau

Taille	ı	Ød	A ₁ , A ₃	A ₂	pour détendeur DN
1	206	88,9	G 3/8	G 1/8	15-65
2	172	152,4	G 3/8	G 1/8	80-100
3	250	152,4	G 3/8	G 1/8	125-200

Dimensions (mm), poids (kg)

Mécanisme de commande		A1	A2	А3	A4	A 5	A6	B1	B2
Membrane	ØD1	125	160	195	270	365	510	125	160
	≈ h	90	100	100	120	165	220	90	110
Poids	env. kg	2,8	4,5	6,0	4,5	10	28	3,5	5,5

Corps	DN	15	20	25	32	40	50	65	80	100	125	150	200
Dimensions	BL	130	150	160	180	200	230	290	310	350	400	480	600
	≈H	390	390	390	408	425	500	505	590	590	705	725	760
	В	125	125	125	125	125	145	145	195	195	260	260	260
Fonte, PN 16	ØD	95	105	115	140	150	165	185	200	220	250	285	340
DN 15-200	Øk	65	75	85	100	110	125	145	160	180	210	240	295
5801 F 616	n	4	4	4	4	4	4	4	8	8	8	8	8
	$\emptyset d_2$	14	14	14	18	18	18	18	18	18	18	23	23
Acier moulé, PN 25	ØD	_	· -	-	-	_	_	_		_	_	_	360
DN 200	Øk	_			- ,		, <u> </u>	· _	· _	_	_		310
5801 F325	n	_	-	_		-		-	-	-	_	-	12
	$\emptyset d_2$	_ '	-	-	_	-	_		_		_		27
Acier moulé, PN 40	ØD	95	105	115	140	150	165	185	200	235	270	300	
DN 15-150, 5801 F 340	Øk	65	75	85	100	110	125	145	160	190	220	250	. —
inox., PN 40,	n	4	4	4	4	4	4	8	8	8	8	8	-
DN 15-50, 5801 F 540	$\emptyset d_2$	14	14	14	18	18	18	18	18	23	27	27	-
Poids 5801 F 616	kg	7	8	9	12	14	18	26	40	50	77	112	170
Poids 5801 F 325/340	kg	7	8	9	12	14	19	27	40	54	82	115	176
Poids 5801 F 540	kg	7 ·	8	9	12	14	19			_			

Livraison suivant nos conditions générales de vente.

Modifications techniques réservées.